Sketch/Image-Based 3D Scene Retrieval: Benchmark, Algorithm, Evaluation

Juefei Yuan¹, Hameed Abdul-Rashid¹, Bo Li¹, Yijuan Lu²

¹University of Southern Mississippi, ²Texas State University
Outline

- Introduction
- Related Work
- Benchmark
- Method
- Evaluation
- Conclusions and Future Work
Introduction

● **2D Scene Sketch/Image-Based 3D Scene Retrieval**
 ○ Focuses on retrieving relevant 3D scene models
 ○ Using scene sketches/image(s) as input

● **Motivation**
 ○ *Vast applications*: 3D scene reconstruction, autonomous driving cars, 3D geometry video retrieval, and 3D AR/VR Entertainment

● **Challenges**
 ○ 2D sketches/images lack 3D scene information
 ○ *Semantic gap*: iconic 2D scene sketches or realistic 2D scene images and accurate 3D scene models
Introduction

- **2D Scene Sketch/Image-Based 3D Scene Retrieval**
 - Brand new research topic in sketch/image-based 3D object retrieval:
 - A query sketch/image contains several objects
 - Objects may overlap with each other
 - Relative context configurations among the objects

- We build the **Scene_SBR_IBR benchmark**
 - To promote this challenging research direction
 - Most comprehensive and largest 2D scene sketch/image-based 3D scene retrieval benchmark
Outline

- Introduction
- Related Work
- Benchmark
- Method
- Evaluation
- Conclusions and Future Work
Related Work

● **3D Scene Retrieval**
 ○ Fisher and Hanrahan [1] proposed context-based 3D model retrieval
 ✓ 3D Bounding box
 ✓ Dimensionality & context Information
 ○ Xu et. al [2] proposed Sketch2Scene, a system for automatic 2D sketch-based 3D scene composition
 ✓ Functional & spatial relationships
 ✓ Using structural groups

Related Work

● **2D/3D Scene Datasets**
 ○ Xiao et. al built Scene UNderstanding (SUN) datasets
 ✓ 130,519 images across 899 scene categories [3]
 ✓ Expanded to 908 classes [4]
 ○ Xiao et. al created SUN3D [5]
 ✓ RGB-D video database with camera pose and object labels

Related Work

- **2D/3D Scene Datasets (Cont.)**
 - Song et. al constructed SUNCG [6]
 - ✓ 46,622 synthetized 3D scenes with 2,644 objects
 - ✓ 84 scene categories
 - Zhou et. al compiled Places [7]
 - ✓ 10,624,928 images
 - ✓ 434 scene categories.

Outline

● Introduction
● Related Work
● **Benchmark**
● Method
● Evaluation
● Conclusions and Future Work
Scene_SBR_IBR Benchmark Overview

● **Overview**
 ○ We have substantially extended the SceneSBR and SceneIBR with 20 additional classes [8, 9]

● **Motivation**
 ○ Results of SceneSBR and SceneIBR called for a more comprehensive dataset that can support both types of retrieval

● **Building process**
 ○ Voting method amongst three individuals
 ○ Scene labels chosen from Places88 [7]
 ○ Data collected from Flickr, Google Images and 3D Warehouse

[8] J. Yuan and et al. SHREC’18 track: 2D scene sketch-based 3D scene retrieval. In 3DOR, pages 1–8, 2018

Scene_SBR_IBR Benchmark

- **2D Scene Sketch Query Dataset (Subset 1)**
 - 750 2D scene sketches
 - 30 classes, each with 25 sketches

- **2D Scene Image Query Dataset (Subset 2)**
 - 30,000 scene images
 - 30 classes, each with 1,000 images

- **3D Scene Model Target Dataset (Subset 3)**
 - 3,000 3D scene models
 - 30 classes, each with 100 models
2D Scene Sketch Query Dataset

Fig. 1 Example 2D scene query sketches (1 per class)
2D Scene Image Query Dataset

Fig. 2 Example 2D scene query images (1 per class)
3D Scene Model Target Dataset

Fig. 3 Example 3D target scene models (1 per class)
Scene_SBR_IBR Benchmark (Cont.)

- **Supporting both modalities**
 - Scene_SBR: Subsets 1 & 3 (sketch-based retrieval)
 - Scene_IBR: Subsets 2 & 3 (image-based retrieval)

- **To evaluate learning-based 3D scene retrieval**

Table 1. Training and testing dataset information of our Scene_SBR_IBR benchmark.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Sketches</th>
<th>Images</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training (per class)</td>
<td>18</td>
<td>700</td>
<td>70</td>
</tr>
<tr>
<td>Testing (per class)</td>
<td>7</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>Total (per class)</td>
<td>25</td>
<td>1,000</td>
<td>100</td>
</tr>
<tr>
<td>Total (all 30 classes)</td>
<td>750</td>
<td>30,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>
Evaluation

● **Seven** commonly adopted performance metrics in 3D model retrieval techniques [10]:
 o Precision-Recall plot (PR)
 o Nearest Neighbor (NN)
 o First Tier (FT)
 o Second Tier (ST)
 o E-Measures (E)
 o Discounted Cumulated Gain (DCG)
 o Average Precision (AP)

● We also have developed the code to compute them
 o http://orca.st.usm.edu/~bli/Scene_SBR_IBR/data.html

Outline

- Introduction
- Related Work
- Benchmark
- Method
- Evaluation
- Conclusions and Future Work
Our Retrieval Algorithm VMV-VGG
VMV-VGG Architecture

Fig. 4 Our VMV-VGG architecture
VMV-VGG Algorithm

- **VMV-VGG six steps**
 - (1) Scene view sampling (Qmacro script)
 - (2) Data Augmentation
 - ✓ Random rotations, reflections, or translations
 - (3) Pre-training and training on VGG1 and VGG2
 - (4) Fine-tuning on scene sketches/images/views
 - (5) Sketch/image/view classification
 - (6) Majority vote-based label matching

Fig. 5 A set of 13 sample views of an office scene model
Outline

- Introduction
- Related Work
- Benchmark
- Method
- Evaluation
- Conclusions and Future Work
Evaluation Overview

- **Evaluation purpose:**
 - Provide the baseline performance for sketch/image-based 3D scene retrieval on our benchmark **Scene_SBR_IBR**
 - Examine the benchmark’s comprehensiveness and difficulty level

- **Evaluation content:**
 - Run our VMV-VGG algorithm on the two sub-level benchmarks
 - ✓ Scene_SBR
 - ✓ Scene_IBR
Fig. 6. Precision-Recall diagram performance of the proposed VMV-VGG on our Scene SBR IBR benchmark.
Results: Performance Metrics

- Overall performance dropped significantly if compared with SHREC’18 tracks, due to substantial increase in
 - Comprehensiveness and challenge level
 - Much more scene categories in Scene_SBR_IBR

Table 2. Performance metrics of our VMV-VGG on our Scene_SBR_IBR benchmark.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>NN</th>
<th>FT</th>
<th>ST</th>
<th>E</th>
<th>DCG</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene_SBR</td>
<td>0.081</td>
<td>0.281</td>
<td>0.369</td>
<td>0.280</td>
<td>0.533</td>
<td>0.244</td>
</tr>
<tr>
<td>Scene_IBR</td>
<td>0.122</td>
<td>0.458</td>
<td>0.573</td>
<td>0.452</td>
<td>0.644</td>
<td>0.392</td>
</tr>
</tbody>
</table>

Table 3. Performance on the SHREC'18 Scene Sketch-Based 3D Scene Retrieval Track Benchmark.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Method</th>
<th>NN</th>
<th>FT</th>
<th>ST</th>
<th>E</th>
<th>DCG</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>MMD-VGG</td>
<td>0.771</td>
<td>0.630</td>
<td>0.835</td>
<td>0.633</td>
<td>0.856</td>
<td>0.685</td>
</tr>
</tbody>
</table>

Table 4. Performance on the SHREC'18 Scene Image-Based 3D Scene Retrieval Track Benchmark.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Method</th>
<th>NN</th>
<th>FT</th>
<th>ST</th>
<th>E</th>
<th>DCG</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>MMD-VGG</td>
<td>0.910</td>
<td>0.750</td>
<td>0.899</td>
<td>0.750</td>
<td>0.929</td>
<td>0.8032</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Related Work
- Benchmark
- Method
- Evaluation
- Conclusions and Future Work
Conclusions & Future Work

● Conclusions
 o **Objective:** To foster this **challenging** and **interesting** research direction: *Scene Sketch/Image-Based 3D Scene Retrieval*
 o **Dataset:** Build **the current largest** 2D scene sketch/image 3D scene retrieval benchmark
 o **Method:** Baseline performance has been provided by VMV-VGG
 o **Evaluation:** Performed a **comparative evaluation** on the accuracy
 o **Impact:** Provided **the largest and most comprehensive common evaluation platform** for sketch/image-based 3D scene retrieval

● Future work
 o Build a **large-scale** and/or **multimodal** 2D scene-based 3D scene retrieval benchmark
 o **Semantics-driven** 2D scene image-based 3D scene retrieval
References

[8] J. Yuan and et al. SHREC’18 track: 2D scene sketch-based 3D scene retrieval. In 3DOR, pages 1–8, 2018
Thank you!

Q&A?