Scan Conversion 2

Scan Converting Circles

Version 1: really bad
For $x = -R$ to R

$y = \sqrt{R^2 - x^2}$;
Pixel ($\text{round}(x)$, $\text{round}(y)$);
Pixel ($\text{round}(x)$, $\text{round}(-y)$);

Version 2: slightly less bad
For $x = 0$ to 360

Pixel ($\text{round}(R \cdot \cos(x))$, $\text{round}(R \cdot \sin(x))$);

Version 3 — Use Symmetry

- Symmetry: If $(x_0 + a, y_0 + b)$ is on circle
 - also $(x_0 \pm a, y_0 \pm b)$ and $(x_0 \pm b, y_0 \pm a)$;
 hence 8-way symmetry.
- Reduce the problem to finding the pixels for 1/8 of the circle

Using the Symmetry

- Scan top right 1/8 of circle of radius R
- Circle starts at $(x_0, y_0 + R)$
- Let’s use another incremental algorithm with decision variable evaluated at midpoint
Sketch of Incremental Algorithm

\[x = x_0; y = y_0 + R; \text{Pixel}(x, y); \]

```
for (x = x_0 + 1; (x - x_0) > (y - y_0); x++) {
    if (decision_var < 0) {
        /* move east */
        update decision_var;
    } else {
        /* move south east */
        update decision_var;
        y--;
    }
    Pixel(x, y);
}
```

- Note: can replace all occurrences of \(x_0, y_0 \) with 0, 0 and \(\text{Pixel}(x_0 + x, y_0 + y) \) with \(\text{Pixel}(x, y) \)
- Shift coordinates by \((-x_0, -y_0)\)

What we need for Incremental Algorithm

- Decision variable
 - negative if we move E, positive if we move SE (or vice versa).
- Follow line strategy: Use implicit equation of circle
 \[f(x, y) = x^2 + y^2 - R^2 = 0 \]
 \(f(x, y) \) is zero on circle, negative inside, positive outside
- If we are at pixel \((x, y)\)
 - examine \((x + 1, y)\) and \((x + 1, y - 1)\)
- Compute \(f \) at the midpoint

Decision Variable

- Evaluate \(f(x, y) = x^2 + y^2 - R^2 \) at the point \(\left(x + \frac{1}{2}, y - \frac{1}{2}\right) \)
- We are asking: “Is \(f \left(x + \frac{1}{2}, y - \frac{1}{2}\right) = (x + 1)^2 + (y - 1)^2 - R^2 \) positive or negative?” (It is zero on circle)
- If **negative**, midpoint inside circle, choose E
 - vertical distance to the circle is less at \((x + 1, y)\) than at \((x + 1, y - 1)\).
- If **positive**, opposite is true, choose SE

The right decision variable?

- Decision based on vertical distance
- Ok for lines, since \(d \) and \(d_{vert} \) are proportional
- For circles, not true:
 \[d((x + 1, y, \text{Circ}) = \sqrt{(x+1)^2 + y^2} - R \]
 \[d((x + 1, y - 1, \text{Circ}) = \sqrt{(x+1)^2 + (y-1)^2} - R \]
 - Which \(d \) is closer to zero? (i.e. which of the two values below is closer to \(R \):
 \[\sqrt{(x+1)^2 + y^2} \] or \[\sqrt{(x+1)^2 + (y-1)^2} \]
Alternate Phrasing (1/3)

- We could ask instead: "Is \((x + 1)^2 + y^2\) or \((x + 1)^2 + (y - 1)^2\) closer to \(R^2\)?"

- The two values in equation above differ by
\[
[(x + 1)^2 + y^2] - [(x + 1)^2 + (y - 1)^2] = 2y - 1
\]

Alternate Phrasing (2/3)

- The second value, which is always less, is closer if its difference from \(R^2\) is less than
\[
\left(\frac{1}{2} \right) (2y - 1)
\]
i.e., if
\[
R^2 - [(x + 1)^2 + (y - 1)^2] < \frac{1}{4} (2y - 1)
\]
then
\[
0 < y - \frac{1}{2} (x + 1)^2 + (y - 1)^2 - R^2
\]
so
\[
0 < (x + 1)^2 + y^2 - 2y + 1 + y - \frac{1}{2} - R^2
\]
so
\[
0 < (x + 1)^2 + y^2 - y + \frac{1}{2} - R^2
\]
so
\[
0 < (x + 1)^2 + \left(y - \frac{1}{2} \right)^2 + \frac{1}{4} - R^2
\]

Alternate Phrasing (3/3)

- The radial distance decision is whether
\[
d_1 = (x + 1)^2 + \left(y - \frac{1}{2} \right)^2 + \frac{1}{4} - R^2
\]
is positive or negative

- And the vertical distance decision is whether
\[
d_2 = (x + 1)^2 + \left(y - \frac{1}{2} \right)^2 - R^2
\]
is positive or negative; \(d_1\) and \(d_2\) are \(\frac{1}{4}\) apart.

- The integer \(d_1\) is positive only if \(d_2 + \frac{1}{4}\) is positive (except special case where \(d_2 = 0\)).

Incremental Computation, Again (1/2)

- How to compute the value of
\[
f(x, y) = (x + 1)^2 + \left(y - \frac{1}{2} \right)^2 - R^2
\]
at successive points?

- Answer: Note that
\[
f(x + 1, y) - f(x, y)
\]
is just
\[
\Delta_E(x, y) = 2x + 3
\]
and that
\[
f(x + 1, y - 1) - f(x, y)
\]
is just
\[
\Delta_{SE}(x, y) = 2x + 3 - 2y + 2
\]
Incremental Computation (2/2)

- If we move E, update by adding $2x + 3$
- If we move SE, update by adding $2(x-y) + 5$
- Forward differences of a 1st degree polynomial are constants and those of a 2nd degree polynomial are 1st degree polynomials – this “first order forward difference,” like a partial derivative, is one degree lower

Second Differences (1/2)

- The function $\Delta_E(x,y) = 2x + 3$ is linear, hence amenable to incremental computation:
 \[
 \Delta_E(x+1,y) - \Delta_E(x,y) = 2 \\
 \Delta_E(x+1,y-1) - \Delta_E(x,y) = 2 \\
 \]

- Similarly
 \[
 \Delta_{SE}(x+1,y) - \Delta_{SE}(x,y) = 2 \\
 \Delta_{SE}(x+1,y-1) - \Delta_{SE}(x,y) = 4 \\
 \]

Midpoint Eighth Circle Algorithm

Andries van Dam
October 1, 2009
ScanConversion2 13/26

Andries van Dam
October 1, 2009
ScanConversion2 14/26

Andries van Dam
October 1, 2009
ScanConversion2 15/26

Andries van Dam
October 1, 2009
ScanConversion2 16/26
Analysis

- Uses floats!
- 1 test, 3 or 4 additions per pixel
- Initialization can be improved
- Multiply everything by 4 → No Floats!
 - Makes the components even, but sign of decision variable remains same

Questions

- Are we getting all pixels whose distance from the circle is less than ½?
- Why is \(y > x \) the right stopping criterion?
- What if it were an ellipse?

Patterned Lines

- Patterned line from \(P \) to \(Q \) is not same as patterned line from \(Q \) to \(P \).
- Patterns can be geometric or cosmetic
 - Cosmetic: Texture applied after transformations
 - Geometric: Pattern subject to transformations

Geometric Pattern vs. Cosmetic Pattern

- Geometric (Perspectivized/Filtered)
- Cosmetic (Contact Paper)
Aligned Ellipses

- Equation is
 \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

 i.e.,
 \[b^2x^2 + a^2y^2 = a^2b^2 \]

- Computation of \(\Delta_e \) and \(\Delta_w \) is similar
- Only 4-fold symmetry
- When do we stop stepping horizontally and switch to vertical?

Direction Changing Criterion (1/2)

- When absolute value of slope of ellipse is more than 1:
 \[\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) > 0 \]

 \[\begin{bmatrix} \frac{\partial f}{\partial x}(x,y) & \frac{\partial f}{\partial y}(x,y) \end{bmatrix} \]
 - This vector points more right than up when
 - How do you check this? At a point \((x,y)\) for which \(f(x,y) = 0\), a vector perpendicular to the level set is \(\nabla f(x,y)\) which is

Direction Changing Criterion (2/2)

- In our case,
 \[\frac{\partial f}{\partial x}(x,y) = 2a^2x \]
 and
 \[\frac{\partial f}{\partial y}(x,y) = 2b^2y \]

 so we check for
 \[2a^2x - 2b^2y > 0 \]
 i.e.
 \[a^2x - b^2y > 0 \]

 - This, too, can be computed incrementally

Problems with Aligned Ellipses

- Now in ENE octant, not ESE octant

- This problem is artifact of aliasing – much more on this later
Non-Integer Primitives and General Conics

- **Non-Integer Primitives**
 - Initialization is harder
 - Endpoints are hard, too
 - making Line \((P, Q)\) and Line \((Q, R)\) join properly is a good test
 - Symmetry is lost

- **General Conics**
 - Very hard--the octant-changing test is tougher, the difference computations are tougher, etc.
 - do it only if you have to.
 - Note that drawing gray-scale conics is easier than drawing B/W conics

Generic Polygons

(More information and these pictures on page 92-93 of textbook)