Content

- Message passing cost
 - Principle parameters

- Routing Techniques
 - Store-and-forward routing
 - Packet Routing
 - Cut-through routing

- Mapping Techniques
Communication Cost

• Communication cost depends on
 – Network topology
 – Data handling and routing
 – Programming model semantics
 – Associated software protocols

Message Passing Cost

• The time taken to communicate a message between two nodes
 – Time to prepare a massage for transmission + time taken by the message to traverse the network to its destination

• Principle parameters
 – Startup time (t_s): time required to handle a message at the sending and receiving nodes. It includes
 – Prepare the message
 – Execute the routing algorithm
 – Establish an interface between the local node and the router
 • This delay is incurred only once
 – Per-hop time (t_h): time taken by the header of a message to travel between two directly-connected nodes in the network - also called node latency
 – Per-word transfer time (t_w):
 • If the channel bandwidth is r words per second, then $t_w = 1/r$
Routing Techniques

- Routing techniques:
 - Store-and-forward routing
 - Packet Routing
 - Suited to networks with highly dynamic states and higher error rates such as local and wide area networks (LAN and WAN)
 - Cut-through routing

Store-And-Forward Routing

- Store-and-forward routing
 - When a message is traversing a path with multiple links, each intermediate node on the path forward the message to the next node after it has received and stored the entire message

- Example
 - A message with size m. It traverses l links
 - At each link it incurs a cost t_h for the header.
 - t_h is quite small in current parallel computers and can be ignored
 - A cost $t_w m$ for the rest of the message to traverse the link
 - Total communication cost is

\[
t_{\text{comm}} = t_s + (mt_w + t_h)l
\]
Cost of Packet Routing

- Consider m word messages
 - Assumption: all packets traverse the same path
 - Size of the packet: r + s,
 - where r is the original message and s is the additional information carried in the packet
 - The time for packetizing the message is proportional to its length: mt_w1
 - Communicating one word every t_w2 seconds
 - Delay of t_h on each hop. If the first packet traverses l hops, then it takes time t_h + t_w2(r+s) to reach the destination. After this time, the destination node receives an additional packet every t_w2(r+s) seconds.
 - There are (m/r-1) additional packets, the total communication time

\[
t_{\text{comm}} = t_s + t_{w1}m + t_hl + t_{w2}(r+s) + (m/r-1)t_{w2}(r+s)
\]

\[
= t_s + t_hl + t_wm
\]

\[
where \ t_w = t_{w1} + t_{w2}(1 + \frac{s}{r}).
\]

Overhead?
Cut-Through Routing

• Cut-through routing
 – A message is broken into fixed size units called flow control digits (flits)
 • It can be smaller than a packet (four bits to 32 bytes)
 • determined by network parameters
 – A tracer is first sent from the source to the destination node to establish a connection
 – The flits are sent one after the other, following the same path
 – As soon as a flit is received at an intermediate node, the flit is passed on to the next node
 – No need to have a buffer at intermediate node to store the entire message
• It needs less memory and is faster
• Most current parallel computers and many LANs support cut-through routing

Communication cost example

– The message with \(m \) words traverses \(l \) links
– \(t_h \) is the per-hop time
– The header of the message takes \(l t_h \) to reach the destination
– Then the entire message arrives in time \(t_w m \) after the arrival of the header of the message
– The total communication time is

\[
t_{comm} = t_s + t_h l + mt_w
\]

– Message constants \(t_s, t_w \) and \(t_h \) are determined by hardware, software and messaging semantics
Cost Optimization

\[t_{\text{comm}} = t_s + t_h l + m t_w \]

- How to optimize the cost of message transfer?
 - Communication in bulk
 - Aggregate small messages into a single large message
 - Need less total startup time
 - The value of \(t_s \) is much larger than those of \(t_w \) or \(t_h \) for clusters
 - Minimize the volume of data
 - Minimize the distance of data transfer
 - Smaller hops \(l \)

Routing Mechanism Classification

- A routing mechanism is critical to the performance
- Classify routing mechanism according to path
 - Minimal
 - Select one of the shortest path
 - Non-minimal
 - Routing the message along a longer path
 - To avoid network congestion
- Classify routing mechanism according to the state of the network
 - Deterministic routing
 - Determine a unique path for a message
 - May result in uneven use of communication resources in a network
 - Adaptive routing
 - Determine the path of the message using the information of network state
 - Detect congestion
Dimension-Ordered Routing

- **Dimension-ordered routing**
 - Assigns successive channels based on a numbering scheme determined by the dimension of the channel
 - XY-routing for a 2D mesh
 - A message is sent along the X dimension until it reaches the column of the destination node
 - Along the Y dimension until it reaches the destination
 - E-cube routing for a hypercube

E-Cube Routing

- Using bitwise exclusive-OR operation $P_i \oplus P_d$ to obtain 101
- Forward a message along the dimension corresponding to the least significant nonzero bit of 101 to node 011
- Repeat the above steps to reach the destination

Figure 2.28 Routing a message from node P_i (010) to node P_d (111) in a three-dimensional hypercube using E-cube routing.
Mapping Techniques for Graph

- Given two graphs, $G(V, E)$ and $G'(V', E')$
 - V: tasks; E: task interaction
 - V': Processors; E': physical links
- Three parameters in mapping
 - Congestion
 - Maximum number of edges mapped onto any edge in E'
 - Dilation
 - Maximum number of links in E' that any edge in E is mapped onto
 - Expansion
 - The ratio of the number of nodes in the set V' to that in set V
Embedding a Linear Array into a Hypercube

- A linear array (or a ring) composed of 2^d nodes can be embedded into a d-dimensional hypercube
 - Map node i of the linear array onto node $G(i,d)$ of the hypercube
- Function $G(i,d)$ is called binary reflected gray code (RGC)
 - the ith entry in the sequence of Gray codes of d bits

$$G(0,1) = 0$$
$$G(1,1) = 1$$
$$G(i, x + 1) = \begin{cases}
G(i, x), & i < 2^x \\
2^x + G(2^x - 1 - i, x), & i \geq 2^x
\end{cases}$$

Example

Figure 2.30: (a) A three-bit reflected Gray code; and (b) its embedding into a three-dimensional hypercube.
Embedding a Mesh into a Hypercube

• Embed a $2^r \times 2^s$ wraparound mesh into a 2^{r+s}-node hypercube
 - Map node (i, j) of the mesh onto node $G(i, r) || G(j, s)$ of the hypercube
 - $||$ denotes concatenation of the two Gray code

• Map a 2×4 mesh into an eight-node hypercube
 - The values of r and s are 1 and 2, respectively
 - For node $(0,0)$, $G(i,r) = G(0,1) = 0$, $G(0,s)=G(0,2) = 00$
 - $(0,0)$ is mapped to node 000 of the hypercube
 - $(0,1)$ is mapped to node $G(0,1)||G(1,2)$ which is node 001 of the hypercube

All nodes in the same row of the mesh are mapped to hypercube nodes whose labels have r identical most significant bits
Embedding a Mesh into a Linear Array

![Image](a) Mapping a linear array into a 2D mesh (congestion 1).

![Image](b) Inverting the mapping – mapping a 2D mesh into a linear array (congestion 5).

Figure 2.32 (a) Embedding a 16 node linear array into a 2-D mesh; and (b) the inverse of the mapping. Solid lines correspond to links in the linear array and normal lines to links in the mesh.

Characteristics of Parallel Platforms and Paradigms

- **Mapping**
 - The programmer has little control on the mapping of processes onto physical processors
 - The mapping of processes to nodes might destroy the well-defined topology of tasks

- **Routing**
 - Many architectures rely on randomized routing
 - Randomized routing alleviate contention on network

- **Communication cost**
 - The per-hop time can be ignored
 - Dominated by startup latency for small message and by per-word component for large message

\[t_{comm} = t_s + mt_w \]
Summary

- Communication cost depends on
 - Programming model semantics
 - Network topology
 - Data handling and routing
 - Associated software protocols
- Message passing cost
 - Principle parameters
- Routing Techniques
 - Store-and-forward routing
 - Packet Routing
 - Cut-through routing
- Mapping Techniques

Questions?